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This volume provides a thorough and up-to-date treatment of multiple scattering of light and
other electromagnetic radiation in media composed of randomly and sparsely distributed
particles. For the first time in monographic literature, the radiative transfer theory (RTT) is
systematically and consistently presented as a branch of classical macroscopic
electromagnetics. The book traces the fundamental link between the RTT and the effect of
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and gives examples of physically based applications of the RTT and CB in noninvasive particle
characterization and remote sensing. This thorough and self-contained book will be valuable
for science professionals, engineers, and graduate students working in a wide range of
disciplines including optics, electromagnetics, remote sensing, atmospheric radiation,
astrophysics, and biomedicine.
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Preface

Since the seminal papers by Lommel (1887), Chwolson (1889), and Schuster (1905),
the radiative transfer equation (RTE) has been widely used in diverse areas of science
and engineering to describe multiple scattering of light and other electromagnetic
radiation in media composed of randomly and sparsely distributed particles. Analyti-
cal studies of the RTE have formed a separate branch of mathematical physics. How-
ever, despite the importance and the widespread use of the radiative transfer theory
(RTT), its physical basis had not been established firmly until quite recently.

Indeed, the traditional “phenomenological” way to introduce the RTE has been to
invoke an eclectic combination of principles borrowed from classical radiometry (i.e.,
intuitively appealing arguments of energy balance and the simple heuristic concepts
of light rays and ray pencils), classical electromagnetics (electromagnetic scattering,
Stokes parameters, and phase and extinction matrices), and even quantum electrody-
namics (“photons”). Furthermore, the phenomenological approach has always relied
on an illusive concept of an “elementary (or differential) volume element” of the dis-
crete scattering medium. To sew together these motley concepts, one needs a set of
postulates that appear to be plausible at first sight but turn out to be artificial upon
close examination.

This inconsistent approach to radiative transfer is quite deceptive since it implies
that in order to derive the RTE for media composed of elastically scattering particles
one needs postulates other than those already contained in classical electromagnetics.
The phenomenological “derivation” becomes especially questionable when one at-
tempts to include the effects of polarization described by the so-called vector RTE
and/or to take into account the effects of particle nonsphericity and orientation. Fur-
thermore, it does not allow one to determine the range of applicability of the RTE and
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trace the fundamental link between the RTT and the effect of coherent backscattering.
During the past few decades, there has been significant progress in studies of the

statistical wave content of the RTT. This research has resulted in a much improved
understanding of the basic assumptions leading to the RTE and has indeed demon-
strated it to be a corollary of the Maxwell equations. Hence, the main goal of this
monograph is to consistently present the RTT as a branch of classical electromagnet-
ics as applied to discrete random media and to clarify the relationship between radia-
tive transfer and coherent backscattering.

Another motivation for writing this book was the recognition of the scarcity of
comprehensive monographs describing the fundamentals of polarized radiative trans-
fer and its applications in a way intelligible to graduate students and non-expert sci-
entists.1 This factor has significantly impeded the development and wide dissemina-
tion of physically-based remote sensing and particle characterization techniques.
Hence, the additional purpose of this volume is to present a broad and coherent out-
line of the subject and to make the technical material accessible to a larger audience
than those specializing in this research area. Consistent with this purpose, our pres-
entation assumes minimal prior knowledge of the subject matter and the relevant
theoretical approaches. We expect, therefore, that the book will be useful to science
professionals, engineers, and graduate students working in a broad range of disci-
plines: optics, electromagnetics, atmospheric radiation and remote sensing, radar me-
teorology, oceanography, climate research, astrophysics, optical engineering and
technology, particle characterization, and biomedical optics.

This volume is a natural continuation of our recent monograph on Scattering, Ab-
sorption, and Emission of Light by Small Particles (Mishchenko et al., 2002; herein-
after referred to as MTL2) in that it consistently uses the same general methodology
and notation system while applying them to multiple scattering by random particle
ensembles. However, the present book contains all the necessary background material
and is self-contained.

As in MTL, we usually denote vectors using the Times bold font and matrices
using the Arial bold font. Unit vectors are denoted by a caret, whereas dyads and dy-
adics are denoted by the symbol ↔. The Times italic font is reserved for scalar quan-
tities, important exceptions being the square root of minus one, the differential sign,
and the base of natural logarithms, which are denoted by Times roman characters i, d,
and e, respectively. Another exception is the relative refractive index, which is de-
noted by a sloping sans serif m. For the reader’s convenience, a glossary listing the
symbols used, their meaning and dimension, and the section where they first appear is
provided at the end of the book (Appendix I). Appendix H contains a list of abbrevia-
tions.

                                                
1 The recent book by Hovenier et al. (2004) is a notable exception.
2 By agreement with Cambridge University Press, MTL is now publicly available in the .pdf
format at http://www.giss.nasa.gov/~crmim/books.html.
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We did not try to compile a comprehensive and detailed reference list. Instead,
preference was given to seminal publications as well as to relevant books and reviews
where further references can be found.

We mention several relevant computer programs made publicly available on-line.
These programs have been thoroughly tested and are expected to generate reliable
results provided that they are implemented as instructed. It is not inconceivable, how-
ever, that some of these programs contain errors and/or are not platform-independent.
Also, it is possible that users could specify input parameter values that are outside the
intended range for which accurate results can be expected. For these reasons the
authors of this book and the publisher disclaim all liability for any damage that may
result from the use of the programs. Although the authors and the publisher have used
their best endeavors to ensure that the URLs for external Internet sites referred to in
this book are correct and active at the time of this book going to press, they cannot
guarantee that a site will remain live or that its content is or will remain appropriate.

Michael I. Mishchenko
Larry D. Travis

Andrew A. Lacis

New York
September 2005






